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Abstract—The coordination and control of autonomous un-
derwater vehicle (AUV) fleets in ocean exploration is a widely
researched topic with much groundwork for traditional AUVs.
Depending on the mission, AUV fleets can relax mission con-
straints on individual vehicles and improve a number of perfor-
mance objectives (e.g. duration, sampling rate, area coverage). As
missions begin to require navigation within more confined areas
such as caves and coral reefs, however, safe interaction with
such environments becomes more difficult for typical rigid AUVs
and more feasible for soft, compliant underwater robots that
can adaptively deform to their surroundings. Moreover, soft un-
derwater robots show great promise as biomimetic vehicles that
can take inspiration from nature’s swimmers and help answer
questions about their behavior, for instance about the schooling
capabilities observed in many fish species. Unfortunately, few
fully autonomous, self-contained underwater soft robots have
been developed, let alone fleets of such robots. To address this,
we present a milestone towards formation control of a fully
autonomous, multi- soft robotic fleet inspired by fish schooling.
We present a vision-based, leader-follower formation strategy
using an untethered soft robotic fish (SoFi) platform that enables
one SoFi robot to pursue another via a visual servoing behavior.
Our system demonstrates basic formation control of a pair of
fully autonomous, self-contained soft robotic fish without external
input.

Index Terms—soft robotics, robot fish, biomimetic, swarm,
formation control, vision-based, fish schooling

I. INTRODUCTION

Fig. 1: Two SoFi robots. The follower is on the left and the
leader is on the right.

In this work, we present the design and implementation
of a soft, bio-mimetic multi-robot system for underwater
monitoring and exploration that is self-contained and fully
autonomous.
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The field of underwater robotics is seeing a growing interest
in the coordination and control of multi-robot systems with
promise to benefit several applications, including ocean sam-
pling, mapping, tracking of marine life, and inspecting critical
undersea infrastructure. Much work has been accomplished
towards formation control of fleets of traditional autonomous
unmanned vehicles (AUVs), including propeller-based and
gliding vehicles [2], [5], [10], and yet a relatively small amount
towards formation control of fleets of underwater soft robots.
In this work, we aim to develop a multi- soft robotic platform
for use in testing both hardware and software concepts that
could expand the benefit of autonomous soft underwater vehi-
cle fleets. In particular, we focus on implementing formation
control for a school of soft robotic fish.

Self-contained, soft robots for underwater tasks Under-
water soft robots have potential to compensate for certain
drawbacks of traditional AUVs. While a typical AUV is rigid
and offers limited flexibility and adaptivity to environments
such as caves and reefs, a soft robot can excel in performing
complex tasks in these areas due to its ability to adap-
tively deform [4], [9]. The sea star-inspired robot PATRICK
demonstrated a notable contribution in closed-loop locomotion
planning of mobile, untethered soft robots that can interact
safely with their environments and which could one day reduce
the invasiveness of our ocean exploration efforts [8]. Soft
robots have also shown significant promise as biomimetic
explorers, such as the aforementioned sea star and also undu-
latory swimmers. Some examples of these self-contained and
soft, biomimetic underwater swimmers include fish, rays, and
jellyfish [3], [11], [12], but are controlled in open-loop, which
is insufficient to study multi-agent behaviors. Soft swimmers
that use closed-loop control, using dielectric elastomer actua-
tors, were developed to swiftly transition between different
formations, which were based on typical natural swarming
behaviors, via a global vision-based positioning system [13].

A soft snailfish-inspired robot developed at Zhejiang Uni-
versity in China demonstrated its free swimming capability
using onboard power, control, and soft actuation at 10,900
below the ocean’s surface around the Mariana Trench [7].
MIT’s soft robotic fish (SoFi), which was developed at the
Computer Science and Artificial Intelligence Laboratory, is
an untethered biomimetic undulatory swimming robot that
actuates a soft silicone elastomer tail to produce thrust and
receives commands via acoustic signals sent by a nearby re-
mote controller. SoFi performed multiple 40-minute swimming
expeditions in the Pacific coral reefs and demonstrated its
capability to navigate around marine life at various depths [6].



Nevertheless, these examples of underwater soft robots do
not feature fully self-contained autonomous capability (e.g.
PATRICK uses an external camera to track and pursue its
targets) [8]. This motivated us to develop a vision-based
autonomous capability for the SoFi platform with the goal
of achieving formation control for a school of SoFi robots.

Fish-like, multi-robot systems While there have been
numerous studies of fish-like robotic systems in hardware
and, independently, algorithms development of multi-robot,
schooling behaviors, there are few instances of full systems
being developed to study both the hardware and software
simultaneously. One particular and recent example is the
BlueSwarm from Berlinger et al. [1], which consists of
fish-like underwater robots that exhibited decentralized 3D
formation control via the signaling and sensing of blue light
among the robots. However, these systems are still based on
relatively rigid robotic actuators.

While these works offer unique contributions to formation
control of underwater robots, these robots either rely on
an external system for autonomy or do not capitalize on
the benefit of soft robots. Thus, we aim to address this by
transforming the SoFi platform into a fully self-contained,
autonomous multi- soft robotic platform that can help mimic
and study fish schooling as well as test other concepts for
autonomous soft underwater robot fleets.

II. SOFI PLATFORM OVERVIEW

Fig. 2: Overview of SoFi software and hardware architecture
for tracking.

In this section we summarize the vehicle concept, electron-
ics and software architecture of our SoFi platform. We present
a photo of two SoFi robots in Figure 1.

A. Vehicle Description

SoFi is an untethered, self-contained underwater system that
propels itself via an undulating hydraulic silicone elastomer
tail, which is designed to flex when one of its two internal
chambers is pumped with liquid. The pump mechanism is
an external gear pump, which in turn is driven by a brushed
DC motor that can periodically alternate directions to achieve
undulatory motion. By maintaining a cyclic alternating flow

and varying the relative amount of liquid pumped into each of
its two internal chambers, SoFi can perform turning motions
with varying rates. In addition, SoFi is equipped with two
symmetric control surfaces for pitch control and diving [6].

B. Software Architecture

A software architecture overview diagram is illustrated in
Figure 2. For sensory input, SoFi is equipped with a monocular
Raspberry Pi camera module that is attached to a fisheye lens.
The high-level computation and processing of sensor input and
control is handled by an onboard Raspberry Pi 3B+, which
interfaces via UART with an NXP LPC1768 microcontroller
that receives the control commands and performs the electrical
actuation of the pump and control surfaces. The high-level
architecture on the Raspberry Pi was developed using the
Robot Operating System (ROS) framework and the low-level
architecture on the NXP microcontroller (developed in C) was
carried over from the previous version of SoFi’s software.

Originally, SoFi was designed to receive control commands
via underwater acoustics from an acoustic remote operated by
a nearby diver. For this work, we opted to remove the acoustic
communications system to focus our efforts on developing a
completely autonomous SoFi platform and instead we execute
commands to start and stop SoFi’s autonomy stack via SSH
under a local Wi-Fi network. Once the autonomy stack is
activated, SoFi independently computes its control commands
based on sensory feedback from the camera.

III. TECHNICAL APPROACH

(a) Raw PiCam image (b) Color mask (yellow)

(c) Blob processing

Fig. 3: SoFi’s visual tracking pipeline illustrated via sample
frames. The raw image taken by the Raspberry Pi camera,
which is shown in (a), is compressed and fed into a color
mask targeting a pre-specified HSV range for yellow, resulting
in the frame in (b). Finally, the mask frame is pruned of
noise and small holes and then fed through a blob detector
to find the centroid and radius of the largest shape by area,
and false positives caused by surface reflections are rejected,
as highlighted in (c).



As a milestone towards autonomous formation of soft
robotic fish swarms, we devised a leader-follower coordination
strategy in which one ’follower’ SoFi robot pursues a second
’leader’ SoFi robot via target state estimation and closed-loop
control. To achieve this coordination over our robotic fish plat-
form, we developed a new software architecture that enables a
visual servoing behavior. Our efforts for this architecture were
mainly divided between developing a target state estimation
pipeline and a workflow for high-level control behavior.

A. Target State Estimation

Fig. 4: Target visual tracking pipeline, an expansion of the
module shown in Figure 2.

Fig. 5: Visualization of target location in SoFi’s camera frame.

Our approach enables a follower SoFi robot to estimate
the relative 3D position of a leader SoFi robot via monocular
visual tracking. Our pipeline achieves this by performing
color segmentation and blob detection on the image stream
captured by the onboard Raspberry Pi camera. In this section,
we summarize the two primary portions of the pipeline: 1)
target detection and 2) state measurement and filtering. We
present an overview of the pipeline in Figure 4.

Fig. 6: Left: Illustration of filtered measurements p̂y and ψ̂.
Right: Illustration of heading model with parameters ω and p̂y .
The blue sinusoidal curve represents the raw target y-offset py
in both illustrations.

Fig. 7: Raw heading estimate py(t) (blue) overlayed on filtered
heading estimate p̂y(t) (red).

1) Target Detection: At the start, a raw frame captured by
the onboard camera is compressed and applied a Gaussian blur
to reduce noise. We then transform the RGB image into the
HSV scale and apply a color mask to capture a range of yellow
hues, which is tuned for the deployment setting, and produce
a color segmented image. Next, we eliminate small holes and
further eliminate noise using morphological transformations
on the color segmented image. We proceed by applying a
simple blob detector to determine the centroid and radius of the
largest color segmented region in the image by area. Figure 3
illustrates the evolution of an image frame at different stages
of the pipeline. The bulk of the image processing operations
described above were implemented using the OpenCV library.
When operating in shallow waters, it is common to see
reflections of target fish near the surface, as shown in Figure 3,
to deal with this, in the case we detect multiple blobs of the
correct shape, we reject all blobs except the bottom-most.

2) State Measurement and Filtering: Given the pixel coor-
dinates (ty, tz) of the target centroid, radius of the detected
blob in pixels r, the image center in pixel coordinates (cy, cz),
the camera focal length f , and the height of the target object
ht, which are known a-priori via standard camera calibration
and measurement of the tail sizes, we estimate the target’s
3D position vector pcam

t = (px, py, pz) relative to the camera
frame C (illustrated in Figure 5.)



Fig. 8: High-level control finite state machine.

px =
fht
2r

(1)

py =
−px(ty − cy)

f
(2)

pz =
−px(tz − cz)

f
(3)

We also compute the heading angle ψ to the target around
the z-axis as illustrated in Figure 5.

ψ = arctan
py
px

(4)

For a stream of detections over time, we smooth the profile
of heading measurements using a second-order Butterworth
low-pass filter due to the oscillation of the camera, which is
induced by the tail undulation. First, we characterize the tar-
get’s oscillation in the camera frame using a simple sinusoidal
function parametrized by SoFi’s undulation frequency ω and
the target offset estimate p̂y in the camera y-axis, as illustrated
in Figure 6. Then, the filter outputs p̂y as well as the filtered
heading estimate ψ̂.

B. Control Behavior

In order to ensure general robust performance and full
autonomy of the SoFi, we implement a finite state machine
similar to [1]. This enables a SoFi robot to transition between
three states: START, SEARCH, and FOLLOW. In the START
state, the robot runs all initialization tasks, such as loading
calibrations and interfacing with embedded processors. SoFi
then transitions into a SEARCH state after a pre-defined time.
The SEARCH state is used for initial target acquisition as
well as re-acquisition in case the target is lost. For initial
acquisition, SoFi swims in a pre-defined circular pattern at
a fixed depth. Once a target is acquired and filtered according
to the sections above, SoFi transitions in the FOLLOW state.
In this state, the filtered heading estimate ψ̂ is fed into a hand-
tuned PID controller, which produces a proportional steering
control command using the error E = ψ̂−ψd where ψd = 0.
Finally, in cases where a target is not detected by the visual

tracking pipeline for 10 frames, SoFi transitions back into
the SEARCH state. However, instead of swimming in a pre-
determined direction, SoFi attempts to re-acquire the target
by swimming in the same direction as it was previous to its
tracking loss.

IV. LEADER-FOLLOWER FORMATION EXPERIMENT

Fig. 9: A plot of the averaged target heading estimate and the
resulting steering control command over time from a follower
SoFi tracking a leader SoFi. Positive commands turn the robot
towards the right in yaw, and negative goes left. The spike in
command near 52sec is when the follower briefly loses sight of
the leader. Corresponding qualitative visualizations are shown
in Figure 10.

In this section, we describe our leader-follower system.

A. Experiment overview

To demonstrate our leader-follower coordination strategy,
we tested SoFi’s ability to fully autonomously follow another
SoFi. In this demonstration, we used two SoFis, one which we
will refer to as the leader and another as the follower. The goal
is to estimate the follower’s ability to robustly track and pursue
the leader in a swimming pool. First, the leader is placed in
the water ahead of the follower SoFi. The follower SoFi is
then commanded to search and then follow the leader SoFi.
The leader is manually driven via wireless commands sent
from a shore-station computer through the SoFi ROS-interface.
For this test, we commanded the leader SoFi to first swim
right, left, right, then straight. Qualitative results are presented
in Figure 10 and quantitative results based on the follower’s
estimates of the target relative state and corresponding control
signals are reported in Figure 9.

B. Results and Discussion

From the qualitative results shown in Figure 10 and quan-
titative results in Figure 9, we can see that the follower
SoFi is, in general, able to successfully track the manually
driven leader SoFi. The follower ”bounces” between a 0-
error estimate and about 0.5 radians, as shown around the
25 second, 75 second, and 100 second regions, due to the
lack of prediction about the overall future trajectory of the



Fig. 10: Visual servoing behavior in action, the leader SoFi is manually driven and the follower is fully autonomous. Images
above are from an external camera, below are the corresponding frames from the follower’s camera. The leader initially starts
to the front left of the follower and is instructed to swim to the right. The leader is commanded to turn left at 29 sec, right
at 52 sec, and straight at 90 sec. The follower SoFi tracks it successfully throughout each maneuver. Times are manually
synchronized between cameras and with the plot in Figure 9.

leader and the follower controller thus lags after reaching the
correct setpoint. We also note that the recovery time worsens
because as the linear distance between the follower and leader
decreases, the rate of perceived rotation around yaw of the
follower is much faster, which is currently not accounted for in
the naive yaw-tracking controller. At 52 seconds, the follower
loses sight of the leader. In these cases, the controller still
swims in the correct direction at max rotational velocity, as
indicated by the spike in control command near 60 seconds,
due to our high-level state controller shown in Figure 8, and
is able to re-acquire the target and continue tracking at the 62
second mark.

It is important to note that the leader fish also tends to drift
to the left in open-loop control due to minor manufacturing-
related issues and the presence of small perturbations from
distant jets in the test pool. Manufacturing inconsistencies in
the tails also contribute to differences in linear and rotational
velocities of the two robots, which also affects general tracking
performance and turning radii of each robot.

V. CONCLUSION AND FUTURE WORK

In conclusion, to the best of our knowledge, we have
demonstrated a first of its kind implementation of a fully-
autonomous and self-contained, soft multi-robot system. We
believe that these form the necessary initial steps towards
enabling larger-scale efforts in soft-robotic swarms and their
utility in studying animal behaviors as well as performing
exploration and monitoring tasks that require additional en-
vironmental safety. Future work includes further hardware

and software development to enable additional complexity
and scalability for a wider range of tasks, such as larger
schooling behaviors using 3 or more robots, and to test the
platform in real-world conditions such as monitoring coral
reefs. One example is to account for distance in the rotational
controllers (in pitch and yaw), and to develop more consistent
manufacturing procedures to ensure tail performance.
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